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Abstract

The direct numerical simulation (DNS) of the turbulent heat transfer for various Prandtl numbers ranging from 0.025 to 5 are

performed to obtain statistical quantities such as turbulent heat ¯ux, temperature variance and their budget terms. The con®gu-

ration is the fully developed channel ¯ow with uniform heating from both walls. The Reynolds number based on the friction velocity

and the channel half width is 180. Turbulent Prandtl number Prt is independent of Pr except for Pr < 0.1. The time constant ratio is

also obtained and its dependence on the Pr is examined. Budget of wall-normal heat ¯ux shows that the temperature-pressure

gradient correlation (TPG) is dominant as the destruction term for a larger Pr while the dissipation is for a smaller Pr. The two

become comparable at Pr� 0.2 for the present Reynolds number. The budget terms in the transport equation for the turbulent heat

¯ux are visualized and the in¯uence of Pr is discussed. Ó 1998 Elsevier Science Inc. All rights reserved.

Keywords: DNS; Turbulent heat transfer; Prandtl number; Turbulent Prandtl number; Time constant ratio; Channel ¯ow

1. Introduction

Several direct numerical simulations (DNS's) of the tur-
bulent heat transfer in a channel ¯ow were performed. Tur-
bulent heat transfer is characterized not only by the Reynolds
number (Re) but also by the Prandtl number (Pr) of the ¯uids.
Kim and Moin (1989) made simulations for Prandtl numbers
Pr� 0.1, 0.71 and 2 with Res� 180. They assumed a constant
volumetric heating with a uniform wall temperature. Pro®les
of the mean temperature, temperature variance and turbulent
heat ¯ux were obtained; but detailed budget of the transport
equations for those quantities was not reported. Later, Lyons
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Notation

a thermal di�usivity
bj, cj, di coe�cient of expansion
cp speci®c heat at constant pressure
k turbulence energy
Nu Nusselt number
P pressure
p pressure ¯uctuation
Pr molecular Prandtl number
Prt turbulent Prandtl number
Ph production term of temperature variance
qw wall heat ¯ux
qtotal total heat ¯ux
R time constant ratio
Res Reynolds number� usd=v
Rem Reynolds number� 2ReshU�i
t time
T temperature
ui; u; v;w velocity ¯uctuation
us friction velocity� ����������

sw=q
p

Ui statistically averaged velocity
x1; x streamwise direction
x2; y wall-normal direction
x3; z spanwise direction

Greek
a heat transfer coe�cient
d channel half width

e dissipation term of turbulent energy
eh dissipation term of temperature variance
eih dissipation term of turbulent heat ¯ux
h temperature ¯uctuation
hs friction temperature� qw=qcpus

H transformed temperature
m kinematic viscosity
q density
sw statistically averaged wall shear stress
/ih temperature pressure-gradient correlation

Superscripts
( ) � normalized by d
( ) � normalized by us; v and hs

(�) statistical averaged
(~) instantaneous value
á ñ averaged over the channel section
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et al. (1991) made the similar DNS for Pr� 1.0 with a lower
Reynolds number of Res� 150. Both walls of their channel
were kept at di�erent temperatures. Kasagi et al. (1992) and
Kasagi and Ohtsubo (1993) performed DNS for Pr� 0.025
and 0.71 with Res� 150. The averaged heat ¯ux qw was uni-
form over both the heating walls; but instantaneous heat ¯ux
may vary with respect to time and position. They obtained the
budget for the temperature variance and the turbulent heat
¯uxes. The turbulent Prandtl number and the time constant
ratio for the scalar transport were also examined. In summary
the DNS's were performed for the heat transfer of a liquid
metal (Pr� 0.025) and gases (Pr � 1) up to now; however, the
heat transfer of water (Pr� 5±7) has not yet been done. This is
because the increase of the Prandtl number requires a larger
mesh number.

The numerical method adopted in all the calculations was
the spectral method, which is more accurate than the ®nite
di�erence method, but it is less ¯exible in application to a
complex geometry. The present author's group examined the
consistency between the analytical and numerical di�erential
operations. Kawamura (1995) showed that the DNS could be
performed with a su�ciently high accuracy by using the ®nite
di�erence method too if a proper attention was paid for the
consistency between the numerical and analytical di�erentia-
tion. With use of the ``consistent'' ®nite di�erence scheme,
Kawamura and Kondoh (1996) performed the DNS of the
turbulent channel ¯ow for Pr� 0.71 and Res� 180 and ob-
tained a good agreement with the one by the spectral method.
Further comparisons with the spectral method by Kasagi et al.
(1992) will be presented also in the present paper to con®rm
the validity of the adopted numerical method.

In the present work, DNS of the turbulent heat transfer for
various Prandtl numbers ranging from 0.025 to 5 are per-
formed with the ®nite di�erence method to obtain turbulence
quantities such as turbulent heat ¯ux, temperature variance,
their budget terms and the turbulent Prandtl number. The data
for the intermediate Prandtl numbers such as Pr� 0.1, 0.2, 0.4
are rather di�cult to be obtained experimentally. The Prandtl
number of 5 is, to the author's knowledge, the highest value
ever calculated for the turbulent heat transfer of a channel ¯ow.

It is known that the smallest scale in the temperature ¯uc-
tuation decreases with the increase of the Prandtl number
inversely proportional to Pr1=2 (Tennekes and Lumley, 1972).
Thus, in the calculation of Pr� 5 the mesh number is doubled

in each direction. This causes roughly ten times calculation
cost, which is the reason why the DNS for this range of the
Prandtl number has not been made hitherto. The present cal-
culation has been enabled by means of a super parallel com-
puter ``Numerical Wind Tunnel (NWT)'' using about eight
million mesh points and 1 GB main memory.

2. Numerical procedure

The con®guration is the fully developed channel ¯ow
(Fig. 1). The computational domain is 6.4d, 2d, 3.2d in the
axial, wall-normal, and spanwise directions, respectively. The
mean ¯ow is in x direction. The ¯ow is heated with a uniform
heat ¯ux from both the walls. The distance, instantaneous
velocity, temperature and pressure are nondimensionalized by
the channel half width, friction velocity, the kinematic vis-
cosity, the density and the friction temperature.

The fundamental equations are:
Continuity equation

o ~U�i
ox�i
� 0; �1�

Navier±Stokes equation

o ~U�i
ot�
� ~U�j

o ~U�i
ox�j
� ÿ o ~P�

ox�i
� 1

Res

o2 ~U�i
ox�2j

: �2�

In this case, the statistically averaged temperature increases
linearly with respect to x. Then the instantaneous temperature
~T��x; y; z� can be divided into two parts

~T��x�; y�; z�� � dhT�m i
dx�

x� ÿ ~H��x�; y�; z��; �3�

where hT�m i is the so-called mixed mean temperature de®ned as

hT�m i �
Z1

0

U�1 T� dy�
,Z1

0

U�1 dy�: �4�

In the present con®guration, its streamwise gradient be-
comes

dhT�m i
dx�

� 1=hU�i; �5�

Fig. 1. Con®guration of DNS.
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where hU�i is the average velocity over the channel section.
With the above transform, the energy equation becomes

o ~H
�

ot�
� ~U�j

o ~H�

ox�j
� 1

Res � Pr

o2 ~H�

ox�2j
�

~U�1
hU�i : �6�

The boundary conditions are

~U�i � 0; ~H
� � 0 at y � 0; 2d: �7�

The above equations are discretized with the use of the ®-
nite di�erence method. A numerical scheme consistent with the
analytical operation (Kawamura, 1995) is employed to ensure
the balance of the transport equations for the statistical cor-
relations such as the turbulent heat ¯ux and the temperature
variance. The computational conditions are given in Table 1.

3. Results

The mean temperature pro®le is given in Fig. 2 for various
Prandtl numbers. The results agree well with the Kader's
correlation (Kader, 1981). The mean temperature pro®le is
plotted again in Fig. 3 with an emphasis on the conduction
region. It is well known that the near-wall temperature varia-
tion can be expanded in terms of y� as

H� � Pr y� � � � � �8�
which is clearly shown in Fig. 3. This ®gure further indicates
that the conduction region penetrates more deeply into the
core region with decrease of the Prandtl number. The results
by Kasagi et al. (1992) with Pr� 0.71 are plotted for com-
parison in Fig. 3 and in some of the following ®gures. The
present results agree quite well with them except for the central

region, where a slight discrepancy arises because of the dif-
ference in Res.

The Nusselt number is nondimensionalized in the present
de®nitions as

Nu � 2da
k
� 2Res Pr=hH�mi: �9�

The obtained Nusselt number is shown as a function of the
Prandtl number in Fig. 4. The results are compared with the
empirical correlation by Sleicher and Rouse (1975). The cor-
relation is originally for the circular tube; moreover, the
present Rem of 5600 is smaller than the applicable range of the
correlation. Nevertheless, both agree satisfactorily well for the
wide range of the calculated Prandtl numbers.

Since the fully developed condition is assumed in this sim-
ulation the mean temperature H� is governed by the following
energy equation

d

dy�
1

Pr

dH�

dy�
ÿ v�h�

� �
� ÿ 1

Res

U�1
hU�i : �10�

The total heat ¯ux, that is the sum of the molecular and
turbulent heat ¯uxes, can be obtained by integrating Eq. (10)
from y� � 0 to y� as

q�total �
1

Pr

dH
dy�
ÿ m�h� � 1ÿ 1

Res

Zy�
0

U�1
hU�i dy�: �11�

Table 1

Computational conditions

Reynolds number Res� 180

Mesh Staggered mesh

Coupling algorithm Fractional step method

Time advancement 2nd-order Adams±Bashforth method

Convective term 2nd central (consistent scheme)

Other terms 2nd central

Boundary conditions Periodic (x, z direction) Non-slip

(y direction)

Computational volume 6.4 d ´ 2 d ´ 3.2 d
Grid number 128 ´ 66 ´ 128 (Pr6 1.5)

256 ´ 128 ´ 256 (Pr� 5.0)

Fig. 2. Mean temperature pro®le with an emphasis on the logarithmic

region.

Fig. 3. Mean temperature pro®le with an emphasis on the conduction

region.

Fig. 4. Relation between Nusselt and Reynolds numbers.
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The above equality is examined and the results are shown in
Fig. 5. The agreement between both sides of Eq. (11) is almost
good. The small discrepancy found in Fig. 5 can be regarded
as a measure of the computational uncertainty. Fig. 5 indicates
that the wall-normal turbulent heat ¯ux increases with the
increase of the Prandtl number, which is balanced by the de-
crease in the molecular heat ¯ux.

In the wall vicinity, the ¯uctuations of the velocity and
temperature can be expanded in terms of y� as

u� � b1y� � c1y�
2 � � � � ; �12�

v� � c2y�
2 � d2y�

3 � � � � ; �13�

w� � b3y� � c3y�
2 � � � � : �14�

On the other hand, the gradient of the instantaneous tem-
perature ~H

�
over the heating boundary satis®es the relation

1

Pr

d ~H
�

dy�
� 1� q0w

qw

; y � 0; �15�

where qw is the average heat ¯ux and q0w is its ¯uctuation. If
Eq. (15) is decomposed into the mean and ¯uctuating parts
and Eq. (8) is considered, the ¯uctuation temperature satis®es
the following equation

1

Pr

dh�

dy�
� q0w

qw

: �16�

This indicates that h� may be expanded as

h� � Pr�bhy� � chy�
2 � � � ��: �17�

The coe�cient bh can still be a function of the Prandtl
number. In case of an extremely highly conductive ¯uid, for
example, the ¯uctuation q0w will strongly tend to zero. So, one
may expect that bh decreases for a very low Prandtl number
¯uid.

The root mean square of the temperature variance divided
by Pr is shown in Fig. 6, which indicates that the coe�cient bh

in Eq. (17) is mostly constant (bh � 0:38) for a wide range of
Pr. For a low Prandtl number of Pr < 0.1, bh decreases as
discussed above.

With the use of Eqs. (12), (13) and (17), the turbulent heat
¯uxes are expressed as:

u�h� � Pr�b1bhy�
2 � c1bhy�

3 � � � ��; �18�

ÿ m�h� � Pr�bhc2y�
3 � bhd2y�

4 � � � ��: �19�

Thus one can expect that in the wall vicinity u�h�=Pr and
ÿm�h�=Pr vary as y�2 and y�3 respectively. Indeed Figs. 7 and
8 con®rm the above relation with their correlation coe�cients

Fig. 5. Turbulent and molecular heat ¯uxes.

Fig. 6. The root mean square of temperature variance.
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b1bh � 0:12 and bhc2� 7 ´ 10ÿ4, which are in good agreement
with the ones obtained by Antonia and Kim (1991). Both
coe�cients are mostly independent of Pr for Pr > 0.2, while
bhc2 decreases for Pr < 0.1 as bh itself does.

The turbulent Prandtl number (Prt) is an important and
useful quantity for practiced heat transfer calculations. It is
often assumed to be constant irrespectively of the wall-normal
distance and the molecular Prandtl number atleast for Pr P 1.
Its dependence on the distance and Pr has long been a subject
of many investigations. Kays (1994) proposed a correlation for
Prt referring several independent experiments. It showed rather
steep increase as the wall was approached. In the turbulence
modelling, Nagano et al. (1993) proposed a turbulence model
which predicted an increasing Prt with increase of Pr.

The turbulent Prandtl number is de®ned as

Prt � vt

at
� u�v� �dH�=dy��

v�h� �dU�1 =dy��
: �20�

With the use of Eqs. (8), (12), (13) and (19), one ®nds that

Prt � b1c2

Prbhc2

Pr

1
� b1c2

bhc2

; �y� ! 0�: �21�
Since b1c2 � 7� 10ÿ4 (Mansour et al., 1988), Prt tends to be

about 1.0 as the wall is approached. Moreover the above
consideration indicates that the wall asymptotic value of the
turbulent Prandtl number is also independent of the molecular
Prandtl number at least for Pr P 0.2.

The turbulent Prandtl numbers obtained through the
present DNS are shown in Fig. 9. Indeed, the wall asymptotic
value of Pr is independent of Prandtl number except for very
low Prandtl numbers such as Pr < 0.1. This feature was sug-
gested by Antonia and Kim (1991) up to Pr� 2; and it is ex-
tended here to a higher Prandtl number. Moreover, for the
higher Pr, the present author (Kawamura, 1996) showed an-
alytically that, in the wall vicinity, Prt is independent of both
Pr and y based on the well accepted relation of Nu µ Pr1=3 for
Pr�1. Thus, one can conclude that the turbulent Prandtl
number does not dependent upon the wall-normal distance
and the molecular Prandtl number for normal to high Prandtl
number ¯uids. This conclusion supports the widely used
practice to employ a constant turbulent Prandtl number in the
calculation of heat transfer.

The turbulence energy k, the temperature variance h2 and
their dissipations construct a nondimensional quantity called
as the time constant ratio

R � h2e
2keh

: �22�

It is also an important quantity because the dissipation of
the temperature variance eh is often calculated with an as-
sumption of a constant R. The wall a symptotic form of these
quantities are:

k � 1

2
u2

i !
1

2
�b2

1 � b2
3� y2; �23�

e � v
oui

oxj

� �2

! v�b2
1 � b2

3�; �24�

h2 ! b2
hy2; �25�

eh � a
oh
oxj

� �2

! ab2
h: �26�

Thus R tends exactly to Pr as the wall is approached. The
time constant ratio is shown in Fig. 10 for various Prandtl

Fig. 9. Turbulent Prandtl number.

Fig. 8. Wall-normal turbulent heat ¯ux.

Fig. 7. Streamwise turbulent heat ¯ux.
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numbers. Its wall limiting value is certainly equal to the
Prandtl number. In the central region, R becomes closer to the
unity. More detailed inspection indicates that, for Pr� 0.7, R is

about 0.5, which is a value often assumed by the simpli®ed
heat transfer calculation. It becomes approximately unity
when Pr� 5.

The budget of the transport equation for the turbulent heat
¯ux is given in Fig. 11(a)±(d). The production term is negative
in this case. It is well known that, in case of the ¯uid with
Pr P 0.7, the dissipation

eih � �a� v�oui

oxj

oh
oxj

�27�

is negligible because of the isotropy in the dissipation scale. It
is actually seen that the dissipation is negligibly small for
Pr� 5.0 (Fig. 11(d)) except in the wall vicinity. Thus, the
production is balanced by the temperature±pressure -gradient
correlation (TPG) term

/ih � ÿh
op
oxi
: �28�

In a low Prandtl number ¯uid, on the other hand, the dis-
sipation is dominant because it takes place in eddies of a larger
scale (see Fig. 11(a)). Indeed, Fig. 11(c) and (d) show that the
TPG term is dominant for Pr� 0.4 and 5.0 while the dissipa-
tion term is overwhelming for Pr� 0.05. It is interesting to
note that the TPG and the dissipation terms become com-
parative at Pr� 0.2 as seen in Fig. 11(b).

The instantaneous contour surfaces of the budget terms
on the transport equation for the wall normal heat ¯ux are
visualized for Pr� 0.05 and 5.0 in Fig. 12(a) and (b), re-
spectively. As discussed above, the dissipation overcomes the
TPG for Pr� 0.05. On the other hand, in the high Prandtl

Fig. 11. Budget of the transport equation for the wall-normal turbulent heat ¯ux: (a) Pr� 0.05, (b) Pr� 0.2, (c) Pr� 0.4, (d) Pr� 5.0.

Fig. 10. Time constant ratio.
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number of Pr� 5.0, the TPG dominates and the dissipation is
hardly visible. Moreover, the structure of the TPG is seen to
become elongated in the streamwise direction and more
slender in the spanwise direction with the increase of the
Prandtl number.

The instantaneous dissipation terms of Pr� 0.05 and 5 are
compared in Fig. 13(a) and (b). It is interesting to note that in
case of Pr� 0.05, only the positive value appears while in
Pr� 5.0 both positive and negative values appear to compen-
sate each other resulting a negligible contribution in the budget
of the transport equation. With notice of this point, the dis-
tribution of the ensemble averaged dissipation for the wall

normal heat ¯ux is reexamined. The result is shown in Fig. 14.
It is appended to emphasise the negativity of e2h at Pr� 5.0. It
is interesting to note that, at the highest Pr of 5.0, the dissi-
pation term becomes even negative, i.e. contributes as ``gain'',
in some of the near wall region.

The temperature variance is illustrated in Fig. 15 for vari-
ous Prandtl numbers. The peak of the temperature variance
becomes higher and moves closer to a wall as the Prandtl
number increases.

The budget terms of the transport equation of the tem-
perature variance are given in Fig. 16(a)±(c). The production
term is mostly balanced with the dissipation for all Prandtl

Fig. 12. Velocity vector and contour surfaces of budget terms in the transport equation of m�h�: (a) Pr� 0.05, (b) Pr� 5.0; white:low pressure region,

gray:dissipation, black:TPG; span z� � 288, height y� � 180.
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number calculated. A closer inspection, however, indicates that
the turbulent and molecular di�usion terms play a more sig-
ni®cant role with increase of the Prandtl number. In case of

Pr� 5.0, the di�usion terms become even comparative with the
dissipation, which has never been seen in the lower Prandtl
number cases.

It is seen in Fig. 16(a)±(c) that the peak in the production
term increases and moves towards the wall with increasing
Prandtl number. The ensemble averaged energy equation for
the fully developed ¯ow is given by Eq. (11). Since u� � y� in
the wall vicinity, Eq. (11) can be integrated with respect to y�

as

1

Pr

dH�

dy�
� 1ÿ ÿ v�h�

� �
ÿ 1

2Rem
y�

2

: �29�

The last term in the right-hand side is negligible compared
to the other terms. Then the production term of the temper-
ature variance can be expressed simply as

Ph � ÿv�h�
dH�

dy�
� Pr ÿ v�h�

� �
1ÿ ÿ v�h�

� �h i
: �30�

It is easily found that the maximum in Ph arises at ÿv�h� � 0:5
with its peak value of

Ph max � Pr=4; �Pr� 1:0� �31�
as already noted by Teitel and Antonia (1993). If only the ®rst
term in Eq. (19) is adopted for simplicity, the position of peak
can be approximated as

y�max �
1

2 bhc2

ÿ �1=3

1

Pr1=3
; �Pr� 1:0�: �32�

Thus, Ph/Pr is plotted versus Pr1=3 y� in Fig. 17. It is found
that, except for low Prandtl numbers such as Pr < 0.1, the
peak and its position can be well normalized with the above
treatment.

Finally, it should be mentioned that the present DNS has
been performed with a relatively low Reynolds number of
Res� 180. Antonia et al. (1992) and Antonia and Kim (1994)
analyzed the e�ect of Reynolds number on the Reynolds stress
and other turbulent statistical quantities. They found that in-
crease of Res caused nonneglible change in those quantities
although their fundamental feature was unchanged. The same
trend can be anticipated for the scalar transportation, too. The
present authors' group is now performing the DNS of turbu-
lent scalar transport with a higher Reynolds number, which
will be reported in near future.

4. Conclusions

1. DNS of the turbulent heat transfer in channel ¯ow was
performed for more than two decades of the Prandtl
number from 0.025 to 5; the largest one (Pr� 5) is, to the
author's knowledge, the highest Prandtl number calculated
to date.

2. The budget terms of the transport equations for the turbu-
lent heat ¯ux and the temperature variance were obtained
and visualized. The e�ect of the Prandtl number was exam-
ined.

3. The near wall behavior of the turbulent quantities were an-
alyzed and statistical correlation coe�cients were obtained
for the above range of Pr.

4. The wall limiting value of the distance from the wall and the
turbulent Prandtl number was proved to be independent of
the molecular Prandtl number except for a low Prandtl
number ¯uid. This conclusion gives a theoretical basis on
the widely employed practice to use a constant Prt in the
heat transfer calculation of the ¯uids with the normal to
high molecular Prandtl number.

Fig. 15. Temperature variance for various Prandtl numbers.

Fig. 14. Dissipation of wall-normal heat ¯ux for various Prandtl

numbers.

Fig. 13. Contour of dissipation in the transport equation of m�h�: (a)

Pr� 0.05, (b) Pr� 5.0; gray to black:positive (loss); gray to

white:negative (gain); span z� � 144, height y� � 90.
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The present data base is open to public access. The detailed
information is given at http://muraibm.me.noda.sut.ac.jp/e-
page1.html.
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